Two inundation events in 2011 underscored the potential for elevated water levels to damage infrastructure and affect terrestrial ecosystems on the low-lying Northwestern Hawaiian Islands in the Papahānaumokuākea Marine National Monument. The goal of this study was to compare passive "bathtub" inundation models based on geographic information systems (GIS) to those that include dynamic water levels caused by wave-induced set-up and run-up for two end-member island morphologies: Midway, a classic atoll with islands on the shallow (2-8 m) atoll rim and a deep, central lagoon; and Laysan, which is characterized by a deep (20-30 m) atoll rim and an island at the center of the atoll. Vulnerability to elevated water levels was assessed using hindcast wind and wave data to drive coupled physics-based numerical wave, current, and water-level models for the atolls. The resulting model data were then used to compute run-up elevations using a parametric run-up equation under both present conditions and future sea-level-rise scenarios. In both geomorphologies, wave heights and wavelengths adjacent to the island shorelines increased more than three times and four times, respectively, with increasing values of sea-level rise, as more deep-water wave energy could propagate over the atoll rim and larger wind-driven waves could develop on the atoll. Although these increases in water depth resulted in decreased set-up along the islands’ shorelines, the larger wave heights and longer wavelengths due to sea-level rise increased the resulting wave-induced run-up. Run-up values were spatially heterogeneous and dependent on the direction of incident wave direction, bathymetry, and island configuration. Island inundation was modeled to increase substantially when wave-driven effects were included, suggesting that inundation and impacts to infrastructure and terrestrial habitats will occur at lower values of predicted sea-level rise, and thus sooner in the 21st century, than suggested by passive GIS-based "bathtub" inundation models. Lastly, observations and the modeling results suggest that classic atolls with islands on a shallow atoll rim are more susceptible to the combined effects of sea-level rise and wave-driven inundation than atolls characterized by a deep atoll rim.
Pace Environmental Notes, the weblog of the Pace University School of Law’s Environmental Collection, is a gateway to news, recent books and articles, information resources, and legal research strategies relevant to the fields of environmental, energy, land use, animal law and other related disciplines.
Friday, April 12, 2013
USGS Report Released: Forecasting the Impact of Storm Waves and Sea-level rise on Midway Atoll and Laysan Island within the Papahānaumokuākea Marine National Monument
Recently, the U.S. Geological Survey (USGS) released a report titled Forecasting the Impact of Storm Waves and Sea-level Rise on Midway Atoll and Laysan Island within the Papahānaumokuākea Marine National Monument—A Comparison of Passive Versus Dynamic Inundation Models (USGS Open File Rep. 2013-1069). The 86-page report available here, authored by Curt D. Storlazzi et al. discusses the following:
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment